

Updated analysis of the non-CO₂ climate impacts of aviation and potential policy measures pursuant to EU ETS Directive Article 30(4)

Aviation & Covid: towards a green recovery? 1 December 2020

Promoting sustainable aviation. Your safety is our mission.

An Agency of the European Union

Background

- → Based on past analyses in 2006 and 2008, the scientific understanding was not considered sufficiently mature to propose policies to address non-CO₂ impacts.
- → Since 2012, EU ETS regulates the CO₂ emissions from applicable flights, which correlates directly with fuel burn.
- → To fulfil the requirement of Article 30(4) of the EU ETS Directive, a report was commissioned by the European Commission to the European Union Aviation Safety Agency (EASA) in 2019.

 \rightarrow Project team comprised of key European climate experts.

→ Stakeholder Groups comprised of wider atmospheric scientific community, technical experts and policymakers.

Terms of Reference

- → Task 1: Current status of science and remaining uncertainties on climate change effects of non-CO₂ aviation emissions.
- → Task 2: Existing technological and operational options used to limit or reduce non-CO₂ impacts from aviation and related trade-off issues.
- → Task 3: Potential policy action to reduce non-CO₂ climate impacts, pros/cons and associated knowledge gaps.

FINAL REPORT

EU ETS Directive Article 30(4) analysis on the effects of non-CO₂ aviation emissions on climate change

Contract reference: MOVE/E1/SER/202 Date: April 2020

MOVE/E1/SER/2019-475/SI2.817062 April 2020

Task 1: Climate Science

- → Non-CO₂ impacts arise from emissions of oxides of nitrogen (NO_X), soot particles , oxidised sulphur species (SO₂, H₂SO₄) and water vapour.
- → Scientific understanding on the impacts of non-CO₂ emissions has evolved over the last decade.
- → Largest aviation non-CO₂ impacts that can be calculated with 'best estimates' are those from 'net-NOx' and contrail cirrus, both of which have significant uncertainties in their magnitude, particularly contrail cirrus.
- → Greater understanding of the indirect cloud effects of soot particles and sulphur, through **aerosol-cloud interactions**, is also required.

Task 1: Climate Science

- → ERF provides a view of current climate impact based on <u>historic</u> emissions.
- → Net climate impact: Increasing over time (mainly CO_2 , NO_X , contrail/cirrus).
- → Contrail/cirrus: Increasing impact but also high uncertainty.
- → NO_x: Net impact a composite of +ve and -ve effects.
- → GWP100 estimates an overall CO₂ multiplier of approx. 1.7 to account for <u>future</u> impacts of non-CO₂ impacts.
- → Significant uncertainties remain with non-CO₂ forcing terms contributing about 8 times more than CO₂ to the overall uncertainty in the aviation net forcing in 2018.

Task 2: Current policies to reduce non-CO₂ emissions

- \rightarrow ICAO aircraft engine emissions certification standards already exist for NO_x and soot (non-volatile Particulate Matter number) emissions.
- → Improvements in aircraft fuel efficiency generally provide a win-win situation for both CO_2 and non- CO_2 emissions. Commercial pressure recently reinforced by the **ICAO aeroplane CO₂ certification standard**.
- → Certified engine emissions LTO data used in modelling methodologies to estimate aircraft emissions in cruise.

Task 3: Potential policy action

 \rightarrow Six policy options were shortlisted to be considered in greater detail

Type of Me	easure	2	Main non-CO ₂ effect(s) addressed by the measure
Financial	1.	NO _x charge	NOx
	2.	Inclusion of aircraft NO _X emissions in EU ETS	NO _X
Fuel	3.	Reduction in maximum limit of aromatics within fuel specifications	Soot particulates and contrail- cirrus
	4.	Mandatory use of Sustainable Aviation Fuels (SAF)	Soot particulates and contrail- cirrus
ATM	5.	Avoidance of ice-supersaturated areas	Contrail-cirrus
	6.	A climate charge	All (NO _x , water vapour, soot, sulphates, contrails)

Z

Task 3: Financial Related Measures

- $\rightarrow \rm NO_{X}$ emissions charge / Inclusion of $\rm NO_{X}$ in ETS
- \rightarrow Key issues:
 - \rightarrow Reduce scientific uncertainty on climate impact from aircraft NO_X emissions
 - \rightarrow Select appropriate CO₂ equivalent emissions metric and time horizon
 - ightarrow Agree on climate damage costs to determine level of charge
- → Uncertainty of climate impact, and potential unintended consequences, introduces a political risk for the integrity of the EU ETS.
- → Implementation through SES Performance and Charging Scheme
- → Timescale: Mid term (5-8 years) / Long term (8+ years)

Task 3: Fuel Related Measures

- \rightarrow Reduction in aromatics through fuel spec or SAF blending mandate
- \rightarrow Key issues:
 - → Reduce scientific uncertainty on climate impact from a reduction in contrail-cirrus formation as a result of cleaner fuels and lower aircraft nvPM emissions.
 - \rightarrow Facilitation initiative to ensure uptake of SAF by the aviation sector.
 - \rightarrow System to monitor fuels used and environmental benefits delivered.
- → SAF mandate is as a potential 'holistic' approach with simultaneous reductions in CO₂, soot particulates and sulphur emissions (leading to a reduction on contrail-cirrus).
- → Timescale: Mid term (5-8 years) / Short term (2-5 years)

Task 3: ATM Related Measures

 \rightarrow Avoidance of ice supersaturated areas / Climate charge

 \rightarrow Key issues:

- → Reduce scientific uncertainty on climate benefit from optimization of flight paths and reduction in persistent contrail-cirrus formation (CO₂/contrail cirrus trade-off).
- → Enhanced meteorological forecast models capabilities needed to predict persistent contrails correctly in time and space.
- \rightarrow Select appropriate CO₂ equivalent emissions metric and time horizon.
- \rightarrow Agree on climate damage costs to determine level of charge.
- → Pilot project operating over the Atlantic needed to assess feasibility and costs/benefits. Limited feasibility within congested European continent airspace.
- → Communication on benefits, as well as incentives, to ensure buy-in.
- → Implementation through SES Performance and Charging Scheme.
- → Timescale: Mid term (5-8 years) / Long term (8+ years)
 ➢EASA

Summary

- \rightarrow Regularly review latest scientific understanding on non-CO₂ impacts.
- → Maintain and regularly review existing ICAO environmental certification standards (CO₂, NO_x, nvPM).
- → Use of Sustainable Aviation Fuels (SAF) has shown a reduction in both non-CO₂ emissions (soot and sulphur), as well as CO₂. ReFuelEU initiative currently considering policy options to incentivize the uptake of SAF.
- → Further research, potentially through Horizon Europe at EU level, to:
 - \rightarrow increase certainty on climate impact from non-CO₂ emissions.
 - → consider different metrics and time horizons that could be used to assess the impact of potential policy measures.
 - → enhance existing analytical methods to estimate aircraft non-CO₂ emissions in cruise based on ICAO certified LTO emissions data.
 - \rightarrow enhance capability to predict accurately the formation of persistent contrails.

Thank you

Questions?

Promoting sustainable aviation. Your safety is our mission.

An Agency of the European Union

easa.europa.eu/connect