Sustainable aviation fuels: the solution to aviation's climate problem?

Jo Howes

Aviation & Covid: towards a green recovery?

1st December 2020

E4tech Strategy | Energy | Sustainability

E4tech's perspective

- International consulting firm, offices in UK and Switzerland
- Focus on sustainable energy
- Established 1997, always independent
- Deep expertise in technology, business and strategy, market assessment, technoeconomic modelling, policy support
- Spectrum of clients from start-ups to global corporations

Low Carbon Vehicles

Biomass for Heat & Power

Solar Ene

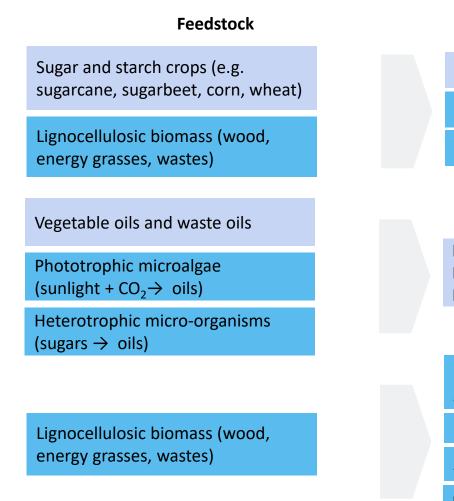
Energy Policy

Hydrogen

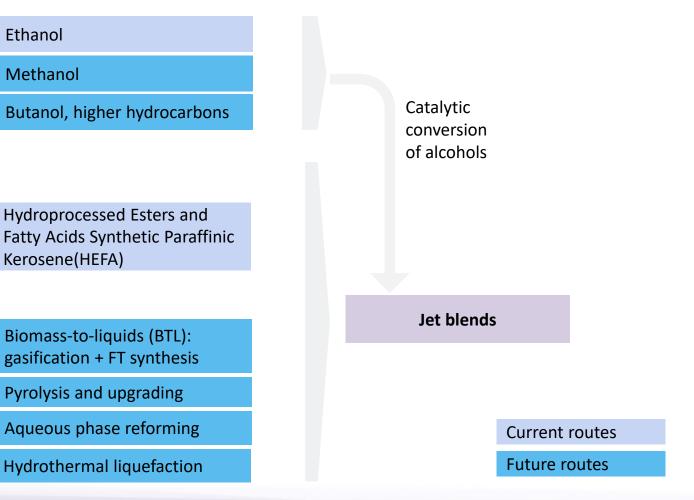
Sustainable aviation fuel (SAF) is likely to be essential to decarbonising the aviation industry

Sustainable aviation fuels include biofuels, RFNBOs and recycled carbon fuels

Renewable fuels from biomass - food and feed crops, wood, agricultural residues, the biomass fraction of wastes


Renewable fuels of non-biological origin - also called e-fuels, Power to liquids, power to X.

Synthetic fuels, where renewable hydrogen is combined with CO_2 (from waste/residue fossil carbon sources or atmospheric/naturally-occurring carbon sources). Would also include hydrogen and electricity in the future


RCF Recycled Carbon Fuels Derived from recycled gaseous or solid fossil wastes

Also interest in reducing lifecycle GHG emissions from fossil fuels – 'lower carbon aviation fuels' LCAF

There are multiple options even within biofuels alone...

Biofuel/intermediate

...with very different characteristics

Certified routes: HEFA is most mature route, but there could be several FT-SPK and ATJ plants in the next 5 years

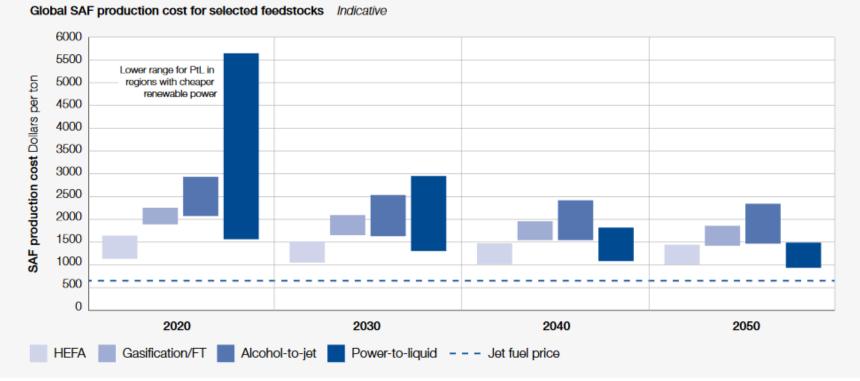
Technology Readiness Level

E4tech

6

Qualification Stage: Fewer players in this area, but HFP-HEFA and IH2 routes could be deployed soon if certified

Commercial scale (but plant modifications needed)	Phase 1 – OEM Review	HFP HEFA-SK	BOEING NESTE
Demo scale plant, plans for FOAK commercial	Phase 1 – Research Report	IH ²	
Pilot and Demo Scale	Phase 2 – Testing	HDO-SAK	VIRENT
	Phase 1 – Testing	ATJ-SKA	BYOGY Swedish BioFuels



Technology Readiness Level

E4tech

All routes are more expensive than fossil jet, and are expected to remain so, despite cost reduction potential

- Production cost is ~2-5 times fossil jet; price is even higher
- Lowest cost route is HEFA, which has high GHG savings when waste oils are used

Source: McKinsey

- However, waste oil feedstocks are limited: other higher cost routes must be commercialized for higher deployment and GHG savings
- How will the cost gap be bridged?

Current policies are not enough to bridge the cost gap between SAF and fossil jet in most EU Member States

- CORSIA is not expected to drive uptake of SAF significantly, as offsetting is expected to be cheaper
- Some aviation is included in the **EU Emissions Trading Scheme**, through counting biofuels meeting RED sustainability criteria as having zero GHG emissions, but the credit price is low
- Under **EU RED II**, aviation is not included in the target, but Member States can choose to count renewable fuels in aviation:
 - Intra-EU aviation can be counted towards the 14% target for use of renewable energy in transport, but not towards the overall target for renewable energy use.
 - Biojet produced from non-food or feed crops feedstocks counts 1.2x towards the target an overall multiplier of 2.4x because of double counting of those feedstocks.
 - However, not all MSs have or will include aviation fuels within their national policy that implements REDII

Because of this, European countries started to develop their own policies

- Countries have been developing national aviation fuels policy, for example:
 - Norway: obligation for 0.5% biofuels in 2020, expected to increase to 30% by 2030.
 - UK: jet fuel suppliers can opt-in into the RTFO scheme but are not obligated. SAF mandate under discussion
 - Netherlands: jet fuel suppliers can opt-in to the HBE trading scheme, and a mandate may be introduced.
 - Sweden: proposed GHG reduction target for aviation fuels to be met through biofuels blending
 - Finland: SAF obligation increasing to 30% in 2030
 - France: SAF roadmap, which aims to have 2% SAF blended by 2025, 5% in 2030 and 50% by 2050. However this may be achieved through supply side support rather than a mandate
 - Spain: climate law, 2% in 2025
 - Germany: Proposal for 2% PtL in 2030
- The sum of targets in bold would result in a relatively limited market for SAF estimated at 1.7mt/yr in 2030, around 3% of projected EU market in 2030 but still over 8 times the SAF produced in 2019

The ReFuelEU Aviation programme is considering options for EU policy

- Instruments could include a mandate, funding mechanisms, voluntary agreements, technical support etc
- Most consultation responses received from industry agreed that a mandate would be an effective option. However, many important questions still to be resolved:
 - Scope: Intra EEA only or Intra and Extra EEA?
 - Obligated party: fuel suppliers or airlines?

How will it work?

- **Chain of custody:** requirement for physical supply of SAF at each airport, or book and claim system to allow obligated parties to comply through SAF use in a smaller number of airports/flights
 - Interaction with other policies: RED II compliance, targets, caps on crops and waste oils, sustainability criteria, GHG threshold, national carbon budgets, CORSIA
 - Metric for the target: Volume based or GHG based?
- Qualifying feedstocks and fuels: crops, waste oils, advanced feedstocks, e-fuels, RCFs, LCAF?
 - Target levels over time: speed of ramp up, levels of sub targets
 - Buy-out and enforcement: presence and level of a buy out price or penalty price
 - Accompanying measures: supply side support for less commercialised routes

will be supplied and when?

Which fuels

E4tech

See E4tech's **Study on the potential effectiveness of a renewable energy obligation for aviation in the Netherlands** for more analysis of these options https://www.rijksoverheid.nl/documenten/rapporten/2020/03/03/bijlage-1-onderzoek-e4tech-sgu-obligation-for-aviation-in-the-netherlands-final-v3

Advanced biofuels and e-fuels will require additional support beyond what is provided for HEFA

- Wider policy clarity
 - Long term vision from governments on how to decarbonise transport
 - Recognition of timing of markets for biomass and power-derived fuels and chemicals
 - Implementation of RED II
- Market and revenue certainty through market-based policy
 - Sub target for advanced biofuels and e-fuels
 - Floor price or contracts for difference
- Access to finance for demonstration and first of a kind commercial scale plants
 - Public support for plants e.g. capital grants, loan guarantees, direct equity investment, tax credits, green bonds
 - Private sector investment

E4tech – Strategic thinking in sustainable energy

• For more information please visit our website:

www.e4tech.com

• Or contact us in London or Lausanne:

E4tech (UK) Ltd 83, Victoria Street London SW1H 0HW United Kingdom +44 (0)20 3008 6140 enquiries@e4tech.co.uk

E4tech Sàrl Av. Juste-Olivier 2 1006 Lausanne Switzerland +41 (0)21 331 15 70

enquiries@e4tech.ch

