

A policy mix for steel decarbonisation

VALENTIN VOGL, LUND UNIVERSITY, 9 JUNE 2020

CMW WEBINAR: CLEANING UP BIG POLLUTERS – HOW TO ENSURE THAT THE EU GREEN DEAL DELIVERS?

50

40

20

10

Contents

- 1. Deep decarbonisation of steel in the EU
- 2. The limits of the EU ETS
- 3. Policy mix for deep decarbonisation

Starting point

- The Paris Agreement means zero emissions
 - Steel: 4% of EU emissions
 - Mostly from ~ 65 blast furnaces
- Global overcapacity > 400 Mt
- We're entering 'the steel scrap age'^[2]
- Caught in the carbon leakage treadmill

Deep decarbonisation: A dual strategy

	1. Material efficiency (demand-side policy)
55% ^[3]	 Reducing demand Better collection, reuse and recycling Possible today – collective action problem
45% ^[3]	 2. Low-emission technology (supply-side policy) - Electrification or carbon capture - Not yet commercial

Technology options

- Need to focus on zero emissions ...
 - ... and avoid technological dead ends
- EU focus now on hydrogen direct reduction and CCU

Not so many reinvestment opportunities left...

Limits of the EU ETS^[4-5]

- 1. Cost-efficiency losing its meaning in a collapsing climate
- 2. It is inherently conservative
- 3. Risk of technological dead-ends
- 4. Neglect of initial investment risk and learning effects
- 5. Does not provide infrastructure
- 6. Blind to institutional lock-in
- 7. Insensitive to context

A policy mix for transition

- Transition phases: RD&D commercialisation – diffusion – decline
- Policy domains
 - Innovation: R&D funding, subsidies, market creation^[6]
 - Decline: phase-outs, emission standards
 - Just transition
 - Inclusive road-mapping
- EU ETS as a funding mechanism [3]

Figure from [4] Rosenbloom et al. (2020)

Conclusion: Towards a deep decarbonisation policy mix

- From carbon pricing to a transition policy mix that
 - ... nurtures learning
 - ... loosens lock-in
 - ... addresses social justice

`[...] we know we must eventually pick all of the apples on the tree.' (Patt & Liliestam, 2018)

Valentin Vogl

valentin.vogl@miljo.lth.se

Lund University – Environmental and Energy Systems Studies http://miljo.lth.se/ *twitter* @valenvogl

Sources:

[1] Eurofer 2019, European Steel in Figures 2019, Eurofer, Brussels.

[2] Pauliuk, S, Milford, RL, Muller, DB & Allwood, JM 2013, 'The steel scrap age', Environ Sci Technol, vol. 47, no. 7, pp. 3448-54. doi: 10.1021/es303149z

[3] Material Economics 2019, The Circular Economy: a Powerful Force for Climate Mitigation, Stockholm.

[4] Patt, A & Lilliestam, J 2018, 'The Case against Carbon Prices', Joule, vol. 2, no. 12, pp. 2494-8. doi: 10.1016/j.joule.2018.11.018

[5] Rosenbloom, D, Markard, J, Geels, FW & Fuenfschilling, L 2020, 'Why carbon pricing is not sufficient to mitigate climate change-and how "sustainability transition policy" can help', Proc Natl Acad Sci U S A, vol. 117, no. 16, pp. 8664-8. doi: 10.1073/pnas.2004093117

[6] Vogl, V, Åhman, M & Nilsson, LJ *(forthcoming)*, 'The making of green steel: A policy evaluation for the early commercialisation phase '.

• All background pictures from wikimedia.org

This work has been conducted as part of the HYBRIT research project RP1. I gratefully acknowledge financial support from the Swedish Energy Agency.

LUND UNIVERSITY